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Statistical Properties of the Odd Binomial States
with Dynamical Applications
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In this paper we investigate the odd binomial state, which interpolates between
odd number and odd coherent states. We discuss the statistical properties of the
Glauber second-order correlation function and squeezing phenomena (normal
squeezing and amplitude-squar ed squeezing). The phase properties in
Pegg±Barnett formalism are considered, and the quasiprobabilit y distribution
functions are examined. The dynamics of the Jaynes ±Cummings model and the
resonance fluorescence are also discussed.

1. INTRODUCTION

There recently has been a considerable effort to generate new quantum

states besides the number states and the coherent states. In fact most of these

states interpolate between the number state and the coherent state, or between

the number state and the thermal state. For example, the binomial state

interpolates between the number state and the coherent state.(1) Also we find

the negative binomial state tending for some limiting cases to the coherent
state, or to the pure thermal states, depending upon the value of the parameters;

for more details see refs. 2±5. Furthermore, the negative binomial state,

which exhibits some nonclassical effects, tends to the logarithmic state if

one removes the vacuum state ) 0 & .(6) As another example we mention the
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generalized geometric state, which interpolates between the number state and

the (nonpure) chaotic state. This state has been considered extensively in

refs. 7±9. Recently, the superposition of two coherent states has been investi-
gated with the aim of understanding the rate of quantum interference between

coherent states and consequently to generate states whose properties are

different from an ordinary coherent state.(10) In fact quantum interference

between coherent states leads to a reduction of quadrature fluctuations as

well as a reduction of photon number fluctuations. The fundamental properties

of quantum mechanical superposition states of light have attracted attention,
and the possibility of generating such states in experiments has been proposed

by many authors. For example, Yurke and Stoler(11) have shown that a coherent

state propagating through an amplitude-dispersive medium, under certain

specified conditions of parameters, can evolve into a superposition of two

coherent states 180 8 out of phase.

Also, with the micromaser we can see interaction between the cavity
field and a sequence of atoms, and can produce superposition states of two

coherent states, namely even and odd coherent states.(12) These superposition

states exhibit oscillations in their photon-number distributions and other

nonclassical properties, such as squeezing and sub-Poissonian photon statis-

tics. Therefore it would be worthwhile to consider more widely classes of
states which interpolate between the even (odd) coherent state and the even

(odd) number state, such as the even (odd) binomial state. In previous commu-

nications(13,14) we have considered the even binomial state, which interpolates

between the even coherent and the even number states; therefore our aim in

the present paper is to consider the odd binomial state, which represents a

different type of intermediate state. This state interpolates between the odd
number state and odd coherent state and is defined by

) c 0 & 5
l
2

[ ) h , M & 2 ) 2 h , M & ]

5 l o
[(M 2 1)/2]

n 5 0 1 M

2n 1 1 2
1/2

h 2n 1 1(1 2 ) h ) 2)(M 2 2n 2 1)/2 ) 2n 1 1 & (1.1)

where l is the normalization constant given by

) l ) 2 5 2[1 2 (1 2 2 ) h ) 2)M] 2 1 (1.2)

In equation (1.1) ) h , M & represents the binomial state defined by

) h , M & 5 o
M

n 5 0

BM
n h n(1 2 ) h ) 2)(M 2 n)/2 ) n & , BM

n 5 ! 1 M

n 2
Since the linear combination of the odd binomial state does not contain
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the vacuum state, the range of the parameter h will be between 0 and 1 such

that 0 , ) h ) # 1. Now if one takes the limit M ® ` and h ® 0 such that

lim
(M , h ;M h ) ® ( ` ,0, a )

) c 0 & 5 (csch ) a ) 2)1/2 o
`

n 5 0

a (2n 1 1)

! (2n 1 1)!
) 2n 1 1 & (1.3)

then we find equation (1.3) represents the usual definition of the odd coherent

state.(15) In ref. 16 the state given by equations (1.1) is generated through the

successive application of a classical laser field and a quantized cavity field.

The organization of the paper is as follows: In section 2 we consider

and discuss the sub-Poissonian behavior and squeezing phenomena. Section
3 is devoted to phase properties in Pegg±Barnett formalism followed; the

quasiprobability distribution functions are treated in Section 4, while in Sec-

tion 5 we examine the Jaynes±Cummings model (i.e., the model of a two-

level atom interacting with a single-mode field in a perfect cavity) against

the odd binomial state; we also extend our discussion to include the resonance

fluorescence for a single atom and many cooperative atoms. Finally we give
our conclusions in Section 6.

2. SUB-POISSONIAN BEHAVIOR AND SQUEEZING
PHENOMENA FOR ODD BINOMIAL STATES

In this section we consider in detail the correlation function as well as

squeezing phenomena. We have first to calculate the expectation values of

powers of the annihilation (creation) operator a(a ² ) with respect to the odd

binomial state. Due to the nature of the photon number distribution, one

would expect the values of various odd powers of a(a ² ) and any power of
these operators higher than M to vanish. Therefore we have the following

expressions:

^ a2s& 5 ) l ) 2 h 2s

(1 2 ) h ) 2)s o
[(M 2 1)/2] 2 s

n 5 0
) BM

2n 1 1 ) 2 ! (M 2 2n 2 1)!

(M 2 2n 2 2s 2 1)!
(2.1)

and the expectation value of the photon number is

^ a ² a & 5 ) l ) 2 ) h ) 2(M/2)[1 1 (1 2 2 ) h ) 2)(M 2 1)] (2.2)

where s is a positive integer and a and a ² satisfy the commutation relation

[a, a ² ] 5 1. The difference between the expectation value of the second

moments of the photon number and the expectation value of the photon

number itself is given by
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^ a ² 2a2 & 5
1

2
) l ) 2 ) h ) 4M(M 2 1) [1 2 (1 2 2 ) h ) 2)M 2 2] (2.3)

2.1. Normalized Second-Order Correlation Function

In this subsection we shall employ the Glauber second-order correlation

function to discuss some statistical properties such as a sub-Poissonian distri-

bution,(17,18) which is characteristic of the odd binomial state. The Glauber

second-order zero-time correlation function is defined as

g(2)(0) 5
^ a ² 2a2 &
^ a ² a & 2 (2.4)

From equations (2.2)±(2.4) we have

g(2)(0) 5 1 2 1/M 1 4(1 2 1/M )
(1 2 2 ) h ) 2)M 2 2(1 2 ) h ) 2)2

[1 1 (1 2 2 ) h ) 2)(M 2 1)]2
(2.5)

Equation (2.5) shows that the value of the correlation function g(2)(0)

is always less than one insofar as both h and M are finite. However, if we

increase the value of M and decrease the value of h at the same time, such

that h ® 0 as M ® ` , then we find the correlation function tends to tanh2 ) a ) 2,
so that a sub-Poissonian effect does exist. This emphasizes that the odd

binomial state has sub-Poisonnian behavior. The gradual behavior from the
odd number state to the odd coherent state can be seen in Fig. 1, where the

function g(2)(0) is plotted against the parameter h ( h is taken to be real) for

different values of the parameter M. We can easily see that for large values

of M and fixed value of h , the function g(2)(0) approaches unity more rapidly

as h ® 1 and persists, where the system in this case shows coherence behavior.

2.2. Normal Squeezing

The squeezing phenomenon represents one of the interesting phenomena

in the field of quantum optics, and is a direct quantum effect of Heisenberg’ s

uncertainty principle. It reflects the reduced quantum fluctuations in one of
the field quadratures at the expense of the other corresponding stretched

quadrature.

The investigation of normal squeezing is based on defining two field

quadrature operators

XÃ1 5
1

2
(a 1 a ² ), XÃ5

1

2i
(a 2 a ² ) (2.6)
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Fig. 1. g(2)(0) from equation (2.5).

These quadrature operators satisfy the commutation relation [XÃ1, XÃ
2] 5

i/2. In order to see if the system acquires squeezing or not, we have to

calculate the quadrature variance ( D Xi)
2, which is defined by

( D XÃi)
2 5 ^ XÃ2

i & 2 ^ XÃ
i & 2 (2.7)

Then normal squeezing holds if

Si 5 4( D XÃi)
2 2 1 , 0, i 5 1 or 2 (2.8)

From equations (2.1) and (2.2) we find that (2.8) yields

S1 5
M

2
) l ) 2 ) h ) 2[1 1 (1 2 2 ) h ) 2)M 2 1] 1

2M ) l ) 2 ) h ) 2 cos 2 f
(1 2 ) h ) 2)

3 o
[(M 2 3)/2]

n 5 0 ! 1 1 2
2n 1 2

M 2 1 1 2
2n 1 1

M 2 ) BM
2n 1 1 ) 2 (2.9a)
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S2 5
M

2
) l ) 2 ) h ) 2[1 1 (1 2 2 ) h ) 2)M 2 1] 2

2M ) l ) 2 ) h ) 2 cos 2 f
(1 2 ) h ) 2)

3 o
[(M 2 3)/2]

n 5 0 ! 1 1 2
2n 1 2

M 2 1 1 2
2n 1 1

M 2 ) BM
2n 1 1 ) 2 (2.9b)

where h 5 ) h ) ei f , and f is a phase parameter. From our numerical investiga-

tion we may conclude that the odd binomial state does not show squeezing

whatever the values of ) h ) and M are. The odd coherent state can be obtained

from equations (2.9a) and (2.9b) as

( D XÃ1)
2 5

1

4
1 ) a ) 2

2
(cos2 f 1 coth ) a ) 2) (2.10a)

( D XÃ2)
2 5

1

4
1 ) a ) 2

2
(coth ) a ) 2 2 cos2 f ) (2.10b)

which are identical with those obtained in refs. 17 and 18.

2.3. Amplitude-Squared Squeezing

Now we use the concept of amplitude-squared squeezing introduced by
Hillery. (20) This type of squeezing arises in a natural way in second-harmonic

generation and in a number of nonlinear optical processes.

To study amplitude-squared squeezing for the odd binomial state we

introduce the field quadrature operators as follows:

YÃ0 5
1

4
(aa ² 1 a ² a) (2.11a)

YÃ1 5
1

4
(a2 1 a ² 2) (2.11b)

YÃ2 5
1

4i
(a2 2 a ² 2) (2.11c)

Operators YÃ1 and YÃ2 satisfy the commutation relation

[YÃ1, YÃ2] 5 iYÃ0 (2.12)

so that the uncertainty principle applied to YÃ1 and YÃ2 is

( D YÃ1)
2( D YÃ2)

2) $
1

4
^ YÃ0 & 2 (2.13)
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Amplitude-squared squeezing holds if

Q1 5 ( D YÃ1)
2 2

1

2
) ^ YÃ0 & ) , 0 (2.14a)

or

Q2 5 ( D YÃ2)
2 2

1

2
) ^ YÃ0 & ) , 0 (2.14b)

From equations (2.1)±(2.3) together with equation (2.14a) we plot Q1

against the parameter h (Fig. 2). In this figure we see that as M increases,
the squeezing gets more pronounced, and the maximum point of squeezing

Fig. 2. Q1 from equation (2.14a).
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moves toward higher values of h . In the case of the odd coherent state, we

have ( D YÃ1)
2 5 ( D YÃ2)

2 such that

( D YÃ1)
2 5 ( D YÃ2)

2 5
1

8
1 ) a ) 2

4
coth ) a ) 2 (2.15)

Equation (2.15) ensures that the odd coherent state is a minimum uncer-
tainty relation for the quadrature variances D YÃ1 and D YÃ2.

3. PHASE PROPERTIES

Since the concept of Hermitian phase operators plays an important role

in quantum optics, we shall study the phase properties of the odd binomial state

using the Pegg±Barnett formalism based on the phase states ) Q & defined by

) Q m & 5
1

! s 1 1 o
s

n 5 0

exp(in Q m) ) n & (3.1)

Equation (3.1) gives a complete set of s 1 1 orthonormal phase

states provided

Q m 5 Q 0 1
2 p m

s 1 1
; m 5 0, 1, . . . , s (3.2)

where the value of Q 0 is arbitrary, and is taken here to be zero. In fact the

phase states ) Q m & are eigenstates of the Hermitian phase operator f ÃQ , which

is defined by

f ÃQ 5 o
s

m 5 0

Q m ) Q m & ^ Q m ) (3.3)

The state of the form

) b & 5 o
s

n 5 0

bne
in x ) n & (3.4)

is known as a partial phase state,(20) where bn are real and positive, and x is
a phase. From equations (3.1) and (3.4), we can calculate the expectation

value and the variance for the phase operator f Ãu with respect to the partial

phase state; we have

^ f Ãu & 5 x (3.5)

^ n f Ã2
Q & 5

p 2

3
1 4 o

n . m

( 2 1)(n 2 m) bnbm

(n 2 m)2 (3.6)
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The phase probability distribution for the partial phase state is given by

P( Q ) 5 ) ^ Q m ) b & ) 2 (3.7)

Since the density of phase states is (s 1 1)/2 p , then in the continuum

limit s ® ` , equation (3.7) becomes

P( Q ) 5
1

2 p
(1 1 2 o

n . m
bmbn cos[(n 2 m) Q ]) (3.8)

In the case of the odd binomial state we have x 5 f and

bn 5 ) h ) 2n 1 1 ! 1 M

2n 1 1 2 (1 2 ) h ) 2)[(M 2 2n 2 1)/2] (3.9)

In Fig. 3 we plot P( Q ) given by (3.8) against the parameter h , for M 5 17.

In this figure we can see that there is only one stretching peak along the h -

axis at Q 5 0 and two wings when Q approaches 6 p . This situation is

Fig. 3. P( Q ) from equation (3.8).
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different compared with the case of the phased orthogonal even binomial

state, where four peaks are involved owing to the presence of the number

states ) 4n & .(23)

4. QUASIPROBABILITY DISTRIBUTION FUNCTIONS

The quasiprobabi lity distribution functions are important tools to discuss

the statistical description of a microscopic system, and also to provide insight

into the nonclassical features of the radiation field. In the present section we

turn our attention to examine the quasiprobabil ity distribution functions

against the odd binomial state.

There are three types of these functions: P-function (Glauber±
Sudershan), W-function (Wigner), and Q-function (Husimi). However, the

integration of these functions runs over phase-space variables, and therefore

it is not an easy task to calculate them. In order to find the quasiprobabil ity

distribution functions we have first to calculate the characteristic function

with respect to the odd binomial state. The characteristic function CP( b ) is

defined by

Cp( b ) 5 Tr [ r Ãe b a ²
e 2 b *a] (4.1)

where r Ãis the density matrix for the odd binomial state given by

r Ã5 o
[(M 2 1)/2]

n,m
BM

2n 1 1(B
M
2m 1 1)* ) 2n 1 1 & ^ 2m 1 1 ) (4.2)

Now if we use the relation(24)

^ n ) e b a ²
e 2 b *a ) m & 5 ! n!

m!
( 2 b *)m 2 nL(m 2 n)

n ( ) b ) 2), m $ n

5 ! m!

n!
b n 2 mL(n 2 m)

m ( ) b ) 2), m # n (4.3)

where L g
n( ) b ) 2) and Ln( ) b ) 2) are the associated Laguerre and Laguerre polyno-

mials respectively, then the charateristic function given by equation (4.1)
takes the form

CP( b ) 5 ) l ) 2 o
[[M 2 1]/2]

n 5 0
) BM

2n 1 1 ) 2L2n 1 1( ) b ) 2)

1 2 ) l ) 2 o
[(M 2 1)/2]

m,n 5 0
m . n

! (2m 1 1)!

(2n 1 1)!
) BM

2n 1 1 ) ? ) BM
2m 1 1 )

3 ) b ) 2(n 2 m)L2(m 2 n)
2n 1 1 ( ) b ) 2) cos[2(n 2 m)( f 1 z )] (4.4)
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where b 5 ) b ) ei z . The above equation consists of two parts; the first part

represents the diagonal term, while the second part represents the off-diagonal

terms of the density matrix r Ã. Having obtained the characteristic function
CP( b ), we are in a position to calculate the quasiprobability distribution

functions. These functions can be obtained if one calculates the following

integral:

F(s, a ) 5 p 2 2 #
`

2 `

d 2 b CP( b ) exp[ a b * 2 b a * 2 (s/2) ) b ) 2] (4.5)

For s 5 1, we obtain the Wigner function, while the Q-function can be

found when we take s 5 2; when s 5 0 equation (4.5) gives us the P-

function. By inserting equation (4.4) into equation (4.5) and performing the

integral over the whole complex b -plane, we have the following expressions:

For s 5 1 (the Wigner function)

W( a ) 5 2 2
) l ) 2
p

e 2 2 ) a ) 2 F o
[(M 2 1)/2]

n 5 0
) BM

2n 1 1 ) 2L2n 1 1(4 ) a ) 2)

1 2 o
[(M 2 1)/2]

m,n 5 0
m . n

! (2m 1 1)!

(2n 1 1)!
) BM

2n 1 1 ) ? ) BM
2m 1 1 )

3 (2 ) a ) )2(n 2 m)L2(m 2 n)
2n 1 1 (4 ) a ) 2) cos[2(n 2 m)( f 1 z )] G (4.5)

For s 5 2 (the Q-function)

Q( a ) 5 ) l ) 2
p

e 2 ) a ) 2 F o
[(M 2 1)/2]

n 5 0
) BM

2n 1 1 ) 2 ) a ) 4n 1 2

(2n 1 1)!

1 2 o
[(M 2 1)/2]

m,n 5 0
m . n

) a ) 2n 1 2m 1 2

! (2m 1 1)!(2n 1 1)!

3 ) BM
2n 1 1 ) ? ) BM

2m 1 1 ) cos[2(n 2 m)( f 1 z )] G (4.6)

which is positive definite at any point of the phase space. We can obtain the

expectation value of the density matrix r Ãwith respect to the coherent state

a by using equation (4.7), where ^ a ) r Ã) a & 5 p Q( a ).

Finally, for s 5 0, we have
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P( a ) 5 ) l ) 2
p F o

[(M 2 1)/2]

n 5 0
) BM

2n 1 1 ) 2L2n 1 1 1 - 2

- a - ( 2 a *) 2 d ( a )

1 2 o
[(M 2 1)/2]

m,n 5 0
m . n

! (2m 1 1)!

(2n 1 1)!
) BM

2n 1 1 ) ? ) BM
2m 1 1 )

3
- 2(n 2 m)

- ( a n 2 m) - ( 2 a *)(n 2 m) L2(m 2 n)
2n 1 1

3 1 - 2

- a - ( 2 a *) 2 d ( a ) cos[2(n 2 m)( f 1 z )] G (4.7)

Now we calculate the probability distribution function PÄ (x) by integrating

W( a ) with a 5 x 1 iy over the imaginary variable y, where(25)

PÄ (x) 5 #
`

2 `

W(x 1 iy) dy (4.8)

Substituting (4.6) into (4.9), we get

PÄ (x) 5 ! 2

p
) l ) 2 exp( 2 2x2) F o

[(M 2 2)/2]

n 5 0
) BM

2n 1 1 ) 2
2 2 2n 2 1H 2

2n 1 1( ! 2x)

(2n 1 1)!

1 2 o
[(M 2 1)/2]

m,n 5 0
m . n

) BM
2m 1 1B

M
2n 1 1 ) cos[2(n 2 m)( f )]

3
2 2 (m 1 n 1 1)H2m 1 1( ! 2x)H2n 1 1( ! 2x)

! (2n 1 1)! (2m 1 1)! G (4.9)

where Hm(z) is the Hermite polynomial of order m:

Hm(z) 5 o
[m/2]

r 5 0

( 2 1)rm! (2z)m 2 2r

r! ((m 2 2r)!
(4.10)

Figures 4a and 4b plot the Wigner function W( a ) for different values

of h and M. We find that, when h is small ( h 5 0.1) and M 5 5, the function

W( a ) has a hole on the summit similar to that of the geometric state; see

refs. 7 and 8. When we increase the value of h such that h 5 0.6 keeping

the value of M small (M 5 5), then we have four asymmetric peaks with a
chaotic behavior, where we can see the interference between the component

states results in the selective preservation of nonclassical effects during the

amplification process; see Fig. 4a. On the other hand, if M increases (M 5
17) with the same value of h ( h 5 0.6), the four peaks are shifted and the
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Fig. 4. W-function from equation (4.6) for (a) M 5 5, h 5 0.6 and (b) M 5 17, h 5 0.6.

chaotic behavior becomes pronounced (Fig. 4b). For the Q( a ) function, we

find that when h is small ( h 5 0.1) and M 5 5, the Q-function represents
the case of the Fock state ) 5 & ; see ref. 2. However, if we increase the value

of h such that h 5 0.6, then the probability of having single photons also

increases, where we have four adjacent deformed peaks at the center (Fig.

5a). As M and h further increase (M 5 17, h 5 0.9) the four peaks shift

(Fig. 5b).

5. APPLICATIONS TO DYNAMICAL SYSTEM

5.1. Jaynes± Cummings Model

In this section we examine the effects of the odd binomial state by two

examples of quantum optical systems, the Jaynes±Cummings model (JCM)
and the resonance fluorescence. In the present subsection we examine the

dynamical evolution of a system of a field starting from an odd binomial

state and a two-level atom. The model Hamiltonian representing such a

system is known as a Jaynes±Cummings model (model of interaction between
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Fig. 4. Continued.

an electromagnetic field and a two-level atom). This model can be written

in the RWA at exact resonance as follows:

H

"
5 v (a ² a 1 Sz) 1 g(S+a 1 S 2 a ² ) (5.1)

The atom is described by the Pauli operators S 6 , Sz; g is the coupling

constant and v is the atomic transition frequency, which has been taken

equal to the frequency of the radiation mode. The atomic operators satisfy

the relations

[Sz , S 6 ] 5 6 S 6 (5.2)

[S+, S 2 ] 5 2Sz , S 2
1 5 S2

2 5 0

If we define CÃ
1 and CÃ

2, such that

CÃ1 5 a ² a 1 Sz (5.3a)

CÃ2 5 g(S+a 1 S 2 a ² ) (5.3b)
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Fig. 5. Q-function from equation (4.7) for (a) M 5 5, h 5 0.6, (b) M 5 17, h 5 0.9.

then it is easy to show that CÃ
1 and CÃ

2 are constants of motion (dCÃ
i /dt 5 0,

i 5 1, 2). The evolution operator for the interaction part UÃ
i (t, 0) is given by

UÃ
i (t, 0) 5 cos DÃt 2 i

sin DÃt

DÃ CÃ2 (5.4)

with DÃ5 ! CÃ2
2. Now let us suppose that the radiation field is prepared to

be initially in the odd binomial state, and the atom in the atomic superposition

coherent state,(27) such that

) u , n & 5 cos u ) 1 1 & 1 e 2 i n sin u ) 2 1 & (5.5)

where the states ) 1 1 & and ) 2 1 & are the atomic excited and ground states,

respectively, while n , and u are two different phases. From equations (1.1)

and (5.4) together with equation (5.5) one can write the time-dependent

eigenstate of the system as

) c i (t) & 5 l o
[(M 2 1)/2]

n 5 0

BM
2n 1 1[h1(n, t) ) 1 1, 2n 1 1 & 1 h2(n, t) ) 1 1, 2n &

1 h3(n, t) ) 2 1, 2n 1 1 & 1 h4(n, t) ) 2 1, 2n 1 2 & ] (5.6)

The coefficients h t (n, t) with r 5 1, 2, 3, and 4 are given by
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Fig. 5. Continued.

h1 5 cos u cos (T ! 2n 1 2) (5.7a)

h2 5 2 ie 2 i n sin u sin(T ! 2n 1 1) (5.7b)

h3 5 e 2 i n sin u cos(T ! 2n 1 1) (5.7c)

h4 5 2 i cos u sin(T ! 2n 1 2) (5.7d)

where T 5 gt. From the above equations we can calculate the expectation

values for different operators. Thus

^ a+ & 5 ^ a & * 5 0 (5.8)

^ a ² a & 5 ) l ) 2 ) h ) 2(M/2)[1 1 (1 2 2 ) h ) 2)(M 2 1)]

1 ) l ) 2 o
[(M 2 1)/2]

n 5 0
) BM

2n 1 1 ) 2[cos2 u sin2(T ! 2n 1 2)

2 sin2 u sin2(T ! 2n 1 1)] (5.9)
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^ a ² 2a2 & 5 ) l ) 2 ) h ) 4(M/2)(M 2 2)[1 2 (1 2 2 ) h ) 2)(M 2 2)]

1 2 ) l ) 2 o
[(M 2 1)/2]

n 5 0
) BM

2n 1 1 ) 2 F (2n 1 1) cos2 u sin2(T ! 2n 1 2)

2 2n sin2 u sin2(T ! 2n 1 1) G (5.10)

^ a2s & 5 ) l ) 2 h 2s

(1 2 ) h ) 2)s o
[(M 2 1)/2]

n 5 0
) BM

2n 1 1 ) 2 ! (M 2 2n 2 1)!

(M 2 2n 2 2s 2 1)! H cos2 u

3 F cos(T ! 2n 1 2 1 2s) cos(T ! 2n 1 2)

1 ! 2n 1 2s 1 2

2n 1 2
sin(T ! 2n 1 2s 1 2) sin(T ! 2n 1 2) G

1 sin2 u F ! 2n 1 1

2n 1 2s 1 1
sin(T ! 2n 1 1) sin(T ! 2n 1 2s 1 1)

1 cos(T ! 2n 1 2s 1 1) cos(T ! 2n 1 1) G J (5.11)

Having obtained the expectation values of the operators, we are in a
position to discuss the time-dependent normalized second-order correlation

function as well as time-dependent squeezing phenomena. This is done in

the next subsections.

5.1.1. Time-Dependent Second-Order Correlation Function

Now if we use equations (2.4) and (5.9) together with equation (5.10)

we can calculate the correlation function g(2)(T ). Figures 6a and 6b plot this

function against the scaled time T in two different cases, the atom initially
in the excited state where u 5 0, or the atom initially in the ground state,

where u 5 p /2. By taking the mean photon number n 5 5 in the above cases

we see that the behavior of the function g(2)(T ) in both cases is in general

oscillatory; when we take the value of M to be small (M 5 9) in both cases,

the correlation function shows sub-Poissonian behavior, while if we increase

the value of M (M 5 19), we find that the correlation function for the case
when the atom is in the excited state still shows subPoissonian behavior,

while the function for the ground-state case starts to oscillate, showing super-

and sub-Poissonian as well as partially coherence behavior. By increasing

the value of M up to 29, we notice that the correlation function in the excited
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Fig. 6. Time-dependent normalized second-order correlation function g(2)(T ) for (a) u 5
0 (atom initially in excited state) and (b) u 5 p /2 (atom initially in the ground state).

state starts to show super-Poissonian behavior similar to that of the ground-

state case; however, in the ground-state case the super-Poissonian behavior

is more pronounced than in the excited-state case (Figs. 6a and 6b).

5.1.2. Time-Dependent Squeezing Phenomena

In order to discuss time-dependent squeezing (normal squeezing) we

have to examine the quadrature variances S1(T ) and S2(T ) against the normal-
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Fig. 6. Continued.

ized time T. By using equations (2.8), (5.9), and (5.11) we plot the quadrature

variances S1(T ) and S2(T ) against the normalized time for M 5 3 and h 5
0.6 in Fig. 7. In this figure we have considered the atom to be perpared

initially in the ground state where u 5 p /2. It is easy to see that, although
the first quadrature S1(T ) includes a periodic function, the squeezing is occurs

once for a short period of time, while the squeezing in the second quadrature

S2(T ) appears frequently. On the other hand, when u 5 0 (atom initially in

the excited state) we observe no squeezing in both quadratures.
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Fig. 7. Time-dependent normal squeezing when u 5 p /2 (atom initially in ground state)

for (a) S1(T ) and (b) S2(T ).

5.2. Resonance Fluorescence

The resonance fluorescence phenomenon is related to a radiatively

decaying two-level atomic system coupled to an external radiation field in
free space. In the following we are concerned with the steady-state regime

(t ® ` ) in two different cases: the single atom (N 5 1), and the thermodynamic

limit in a cooperative many-atom system where N ® ` .

5.2.1. A Single Atom

It is well known that when we have an external field in the Fock state

) n & then in the steady-state case the mean atomic inversion for a single two-

level atom interacting with this field takes the form (28,29)
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Fig. 7. Continued.

^ Sz( ` ) & n 5 2
1

2 o
n

m 5 0

( 2 1)mn! (b2)m

(n 2 m)!
5 2 1 1

2 2 (b2)nL( 2 n 2 1)
n ( 2 b 2 2) (5.12)

where

b2 5 2 " 2 2g2 1 D 2 1
1

4
g 2 2

2 1

(5.13)

g is the coupling constant, and g is the Einstein coefficient, while D is the
frequency detuning between the external field and the atom.

Now when we consider the statistical average over the state of the field

which is taken to be the odd-binomial state (1.1), then in the steady-state

case (t ® ` ), the mean atomic inversion is given by
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^ Sz & 5 ) l ) 2 o
F M 2 1

2 G
n 2 0

) BM
2n 1 1 ) 2

3 [ ^ Sz( ` ) & 2n 1 1 cos2 u 2 ^ Sz( ` ) & 2n sin2 u ] (5.14)

where ^ Sz( ` ) & 2n and ^ Sz( ` ) & 2n 1 1 are given by (5.12). For the odd coherent

state equation (5.14) reduces to

^ Sz( ` ) & 5 2
1

2 sinh ) a ) 3 F (sinh ) a ) 2 2 b2 ) a ) 2 cosh ) a ) 2) cos2 u
1 2 b4 ) a ) 4

2 (sin2 u )[(sinh ) a ) 2)(1 2 D82) 2 1[1 1 b2D8 ) a ) 2]

2 b2(cosh ) a ) 2)(1 2 D82) 2 1 ) a ) 2(b2 ) a ) 2 1 D8)]

3 (1 2 b4 ) a ) 4) 2 1 G (5.15)

where D8 5 d/d ) a ) 2.

5.2.2. Thermodynamic Limit

Now consider the case of resonance fluorescence in which N ® ` and

g ® 0 such that ( g N ) is finite; then at exact resonance we have the scaled
atomic inversion in the number state of the field in the form (20,21)

lim
n ® ` F ^ Sz( ` ) & n

N G 5 2
1

2
Cn 1 1

2
; X 2 2

5 2
1

2 o
n

m 5 0 1 1/2

m 2 1 n

m 2 m! ( 2 X 2 2)m (5.16)

where X 2 5 g n/(2 " 2 2 g 2) and Cn are the Poisson±Charlier polynomials. For

the state (5.6) the thermodynamic limit becomes

lim
N ® ` F ^ Sz( ` ) &

N G 5 ) l ) 2
2 o
F M 2 1

2 G
n 5 0

) BM
2n 1 1 ) 2

3 F C2n 1 1

2
; X 2 2 sin2 u 2 C2n 1 1 1 1

2
, X 2 2 cos2 u G (5.17)
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In Fig. 8 we plot the atomic inversion for a single atom given by equation

(5.14) (full line) and the thermodynamic limit given by equation (5.17)

(dashed line) against the parameter h for u 5 0 and p /2 with b2 5 X 2 2 5 10 2 2.
We observe that when the atom is in the excited state (Fig. 8a) the value of

lim
N ® ` F ^ Sz( ` ) &

N G > 0

is achieved very slowly and it needs larger values of M and h . This behavior

also has been noticed in the case of the generalized geometric state.(4) For

an atom in the ground state (Fig. 8b), upon increasing the values of h and

M, ^ Sz( ` ) & reaches its steady-state value at a slower rate. The same behavior
is also observed in ref. 4. It is clear that the rate in the thermodynamic limit

is slower than that of a single atom when the atom is in the ground state

(Fig. 8b) and conversely when the atom is in the excited state (Fig. 8a). For

the odd coherent state, we thus have

lim
N ® ` F ^ Sz( ` ) &

N G ®
1

2 sinh ) a ) 2 o
`

n 5 0

) a ) 4n 1 2

(2n 1 1)!

3 F C2n 1 1

2
; X 2 2 sin2 u 2 C2n 1 1 1 1

2
, X 2 2 cos2 u G (5.18)

6. CONCLUSION

In the present paper we have introduced the odd binomial state and

considered some of its statistical properties. In addition to the oscillation

behavior in the photon number distribution which could be expected due to
removing the even number states for the photons, we have discussed the

Glauber second-order correlation function. States of this type show sub-

Poissonian behavior for all values of h and M. However, for large values of

M the states approach the value 1 as h becomes closer to unity, giving a

higher degree of coherence. On the other hand, normal squeezing has been
found to be absent for the odd binomial state whatever the values of h and

M. Amplitude-squared squeezing exists for the same state, and becomes more

pronounced for larger values of M with the point of maximum squeezing

moving toward higher values of h . Investigation of the phase distribution

function in the Pegg±Barnett formalism shows a loss of phase information

as h ® 0 or h ® 1 which reflects the fact of having a Fock state. But for

Fig. 8. Atomic inversion in the steady state for resonance fluorescence given by equations

(5.15) (single atom, full line) and (5.17) (thermodynami c limit, dashed line) for (a) u 5 0

(atom initially in the excited state) and (b) u 5 p /2 (atom initially in the ground state).
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0 , h , 1 peak occurs around u 5 0 and two wings at u 5 6 p , as shown

in earlier investigations.(9,14) Nonclassical effects can be studied through the

quasiprobability functions. A negative value for the Wigner function is a
signature for nonclassical effects of the state. This has been demonstrated

for the Wigner function for the odd-binomial state, also an interference pattern

is apparant due to the superposition of the two binomial states. These effects

are also demonstrated for the Q-function. Increasing the number M adds

more excitations and the interference pattern becomes richer. The dynamical

behavior of a two-level atom in a cavity with a field prepared initially in an
odd binomial state shows some interesting features. In contrast to the initial

sub-Poissonian behavior of the field, the existence of the atom changes its

characteristics; it becomes oscillatory and shows super-Poissonian behavior

especially when the atom starts from a ground state. The phenomenon of

normal squeezing which is absent for the field initially is found to exist as

time develops, especially when the atom starts from its ground state. However,
the state of the field stays unsqueezed when the atom is prepared initially in

its excited state. Numerical investigations for amplitude-squared squeezing

show that it exists in small amounts in both components for small values of

h and large values of M. Therefore the existence of the two-level atom in a

field prepared initially in an odd binomial state dramatically changes its
charactristics. Finally, the atomic inversion in the steady state for resonance

fluorescence for a single atom and the thermodynamic limit approaches the

saturated case as M increases. The rate in the thermodynamic limit is slower

than for the case of a single atom when the atom is in its ground state and

conversely when the atom is in its excited state.
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